Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The benefits of collaboration between the research and operational communities during the research-to-operations (R2O) process have long been documented in the scientific literature. Operational forecasters have a practiced, expert insight into weather analysis and forecasting but typically lack the time and resources for formal research and development. Conversely, many researchers have the resources, theoretical knowledge, and formal experience to solve complex meteorological challenges but lack an understanding of operation procedures, needs, requirements, and authority necessary to effectively bridge the R2O gap. Collaboration then serves as the most viable strategy to further a better understanding and improved prediction of atmospheric processes via ongoing multi-disciplinary knowledge transfer between the research and operational communities. However, existing R2O processes leave room for improvement when it comes to collaboration throughout a new product’s development cycle. This study assesses the subjective importance of collaboration at various stages of product development via a survey presented to participants of the 2021 Hazardous Weather Testbed Spring Forecasting Experiment. This feedback is then applied to create a proposed new R2O workflow that combines components from existing R2O procedures and modern co-production philosophies.more » « lessFree, publicly-accessible full text available May 19, 2026
- 
            Abstract As an increasing number of machine learning (ML) products enter the research-to-operations (R2O) pipeline, researchers have anecdotally noted a perceived hesitancy by operational forecasters to adopt this relatively new technology. One explanation often cited in the literature is that this perceived hesitancy derives from the complex and opaque nature of ML methods. Because modern ML models are trained to solve tasks by optimizing a potentially complex combination of mathematical weights, thresholds, and nonlinear cost functions, it can be difficult to determine how these models reach a solution from their given input. However, it remains unclear to what degree a model’s transparency may influence a forecaster’s decision to use that model or if that impact differs between ML and more traditional (i.e., non-ML) methods. To address this question, a survey was offered to forecaster and researcher participants attending the 2021 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiment (SFE) with questions about how participants subjectively perceive and compare machine learning products to more traditionally derived products. Results from this study revealed few differences in how participants evaluated machine learning products compared to other types of guidance. However, comparing the responses between operational forecasters, researchers, and academics exposed notable differences in what factors the three groups considered to be most important for determining the operational success of a new forecast product. These results support the need for increased collaboration between the operational and research communities. Significance StatementParticipants of the 2021 Hazardous Weather Testbed Spring Forecasting Experiment were surveyed to assess how machine learning products are perceived and evaluated in operational settings. The results revealed little difference in how machine learning products are evaluated compared to more traditional methods but emphasized the need for explainable product behavior and comprehensive end-user training.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Abstract Recently, the use of machine learning in meteorology has increased greatly. While many machine learning methods are not new, university classes on machine learning are largely unavailable to meteorology students and are not required to become a meteorologist. The lack of formal instruction has contributed to perception that machine learning methods are “black boxes” and thus end-users are hesitant to apply the machine learning methods in their everyday workflow. To reduce the opaqueness of machine learning methods and lower hesitancy toward machine learning in meteorology, this paper provides a survey of some of the most common machine learning methods. A familiar meteorological example is used to contextualize the machine learning methods while also discussing machine learning topics using plain language. The following machine learning methods are demonstrated: linear regression, logistic regression, decision trees, random forest, gradient boosted decision trees, naïve Bayes, and support vector machines. Beyond discussing the different methods, the paper also contains discussions on the general machine learning process as well as best practices to enable readers to apply machine learning to their own datasets. Furthermore, all code (in the form of Jupyter notebooks and Google Colaboratory notebooks) used to make the examples in the paper is provided in an effort to catalyze the use of machine learning in meteorology.more » « less
- 
            Abstract Over the past decade the use of machine learning in meteorology has grown rapidly. Specifically neural networks and deep learning have been used at an unprecedented rate. To fill the dearth of resources covering neural networks with a meteorological lens, this paper discusses machine learning methods in a plain language format that is targeted to the operational meteorological community. This is the second paper in a pair that aim to serve as a machine learning resource for meteorologists. While the first paper focused on traditional machine learning methods (e.g., random forest), here a broad spectrum of neural networks and deep learning methods is discussed. Specifically, this paper covers perceptrons, artificial neural networks, convolutional neural networks, and U-networks. Like the Part I paper, this manuscript discusses the terms associated with neural networks and their training. Then the manuscript provides some intuition behind every method and concludes by showing each method used in a meteorological example of diagnosing thunderstorms from satellite images (e.g., lightning flashes). This paper is accompanied with an open-source code repository to allow readers to explore neural networks using either the dataset provided (which is used in the paper) or as a template for alternate datasets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
